CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

CHEMBIOCHEM

Supporting Information

for

SPOT Synthesis of Peptide Arrays on Self-Assembled Monolayers and their Evaluation as Enzyme Substrates

Nicolas Laurent, Rose Haddoub, Josef Voglmeir, Stephen C. C. Wong, Simon J. Gaskell, and Sabine L. Flitsch*

Preparation of the amine-terminated self-assembled monolayers on gold

A disposable 64-wells gold surface (Applied Biosystems) was cleaned with a 5:1 solution of concentrated sulphuric acid and hydrogen peroxide (caution: very oxidizing agent) and thoroughly rinsed with deionised water, ethanol and dried under a stream of nitrogen. Self-assembled monolayers on gold surfaces were prepared by spotting a DMSO solution (final concentration 0.1 mg/mL, 0.4 μ L per spot) of a 1:1 mixture of carboxylic acid-terminated and tri(ethylene glycol)-terminated alkanethiols (ProChimia, chemical formulae HS(CH₂)₁₇(OCH₂CH₂)₆OCH₂CO₂H and HS(CH₂)₁₇(OCH₂CH₂)₃-OH, respectively) into each well and left overnight to react before rinsing with DMSO, ethanol and drying as above. The terminal carboxylic acid was then activated for 1 h at RT by spotting a freshly prepared DMF solution of EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 0.2 M) and NHS (*N*-hydroxysuccinimide, 0.05 M). After rinsing and drying as above, a DMF solution of *N*-Fmoc diaminobutane (Aldrich, 100 mM) was spotted and left to react overnight at RT. Following washing steps as above, the gold slide was dipped into a 20% solution of piperidine in DMF for 10 min, then rinsed and dried as above.

General procedure for SPOT synthesis.

Coupling conditions: 10 mg of Fmoc amino acid were dissolved in 0.25 mL of a solution containing 52 mg/mL of PyBOP and 36 μ L/mL of DIPEA in dry DMF and allowed to react for 5 min at RT. 0.4 μ L of the above solution was then manually spotted in each well of the slide prepared as above using an Eppendorf pipette, and the slide was then placed at 37 °C in a sealed container. After 1 h, the surface was rinsed with DMF, ethanol and dried under a stream of nitrogen.

Fmoc deprotection: removal of the Fmoc was carried out by dipping the slide into a 20% solution of piperidine in DMF for 10 min at RT, followed by rinsing and drying.

Cleavage of the side chain protecting group: the slide was dipped into a 50% solution of trifluoroacetic acid in DCM and allowed to stand for 4 h at RT before rinsing and drying.

Enzymatic reactions on gold surfaces.

Thermolysin-catalysed hydrolysis: each well of the slide was incubated overnight at 37°C with a solution of thermolysin (2 mg/mL in potassium phosphate buffer, pH 7.5).

Thermolysin-catalysed peptide-bond formation: each well of the slide was incubated overnight at 37°C with a saturated solution of Fmoc amino acid (about 50 mg/mL) and thermolysin (2 mg/mL) in potassium phosphate buffer, pH 7.5.

ppGalNAcT2: Incubation was performed by spotting onto each well an assay mixture of the enzyme ppGalNAcT2, UDP-GalNAc and MnCl₂ in AMPD buffer pH 7.4 as previously described,^[1] and incubated overnight at 37°C.

Bovine **b** 1,4-GalT: each well was coated with a mixture of β 1,4-GalT, UDP-Gal and MnCl₂ in Tris-HCI buffer pH 8.0^[2] and incubated overnight at 37°C.

MALDI-ToF MS analysis.

Each well of the surface was coated with a solution of THAP (2,4,6-trihydroxyacetophenone, 10 mg/mL in acetone), and the target was loaded in to a Voyager-DE STR Biospectrometry MALDI-ToF mass spectrometer (PerSeptive Biosystems) operating with a 337 nm nitrogen laser. Mass spectra were acquired either using reflector or

¹ N. Laurent, J. Voglmeir, A. Wright, J. Blackburn, N. T. Pham, S. C. C. Wong, S. J. Gaskell, S. L. Flitsch, *ChemBioChem* **2008**, *9*, 883-887

² Z.-I. Zhi, N. Laurent, A. K. Powell, R. Karamanska, M. Fais, J. Voglmeir, A. Wright, J. M. Blackburn, P. R. Crocker, D. A. Russell, S. L. Flitsch, R. A. Field, J. E. Turnbull *ChemBiochem* **2008**, *9*, 1568-1575.

linear ToF, positive ion mode using an accelerating voltage of 20kV and an extraction delay of 200 ns (reflector mode) or 225 ns (linear mode).

Thermolysin-catalysed peptide bond formation.

Table S1: *m/z* detected after incubation of immobilised Phe or Leu with a mixture of thermolysin and Fmoc amino acid (for clarity, only the m/z of the sodium adducts of the mixed disulfide formed between the peptide-terminated and the tri(ethylene glycol)-terminated alkanethiols are shown).

	Immobilised	Fmoc amino	Product	m/z
	amino acid	acid added	TTOQUEL	detected
1	Phe	FmocLeu	FmocLeu FmocLeuPhe	
2	Phe	EmocPhe	Phe	1269
		T moer ne	FmocPhePhe	1638
3	Phe	EmocAla	Phe	1269
		Тпосла	FmocAlaPhe	1561
4	Phe	FmocGly	Phe	1269
5	Leu	FmocLeu	FmocLeuLeu	1570
6	Leu	EmocPhe	Leu	1235
		T moer ne	FmocPheLeu	1604
7	Leu	EmocAla	Leu	1235
		Посла	FmocAlaLeu	1528
8	Leu	FmocGly	Leu	1235

Muc1 array:

Table S2 provides a list of Muc1-derived peptides array with the masses detected before and after enzymatic glycosylation and the relative ratios glycopeptides/peptide. For clarity, the signals for the mixed disulfide formed between the peptide-terminated and the tri(ethylene glycol)-terminated alkanethiols were omitted from the table but were also considered for calculating the ratios glycopeptide/peptide.

	m/z peptide		m/z glycopeptide		Ratio
Peptide	M+H	M+Na	M+H	M+Na	glycopeptide / peptide
AHGVT <mark>S</mark> APA	1891	1913	2094	2116	1.0
AHGVT <mark>P</mark> APA	1901	1923	2104	2126	1.5
AHGVT <mark>R</mark> APA	1960	1982	2163	2185	0.65
AHGVT <mark>D</mark> APA	1919	1941	2122	2144	1.0
AHGVTIAPA	1917	1939	2120	2142	1.1
AHGVT <mark>G</mark> APA	1861	1883	2064	2086	0.88
AHGVT <mark>M</mark> APA	1935	1957	2138	2160	0.67
AHGVT <mark>H</mark> APA	1941	1963	2144	2166	0.98
AHGVT <mark>F</mark> APA	1951	1973	2154	2176	0.58
AHGVT <mark>Y</mark> APA	1967	1989	2170	2192	0.77
AHGVT <mark>Q</mark> APA	1932	1954	2135	2157	0.84
AHGVT <mark>V</mark> APA	1903	1925	2106	2128	1.2
AHGVT <mark>E</mark> APA	1933	1955	2136	2158	1.1
AHGVT <mark>T</mark> APA	1905	1927	2108	2130	0.79
AHGVT <mark>N</mark> APA	1918	1940	2121	2143	0.63
AHGVT <mark>A</mark> APA	1875	1897	2078	2100	1.2
AHG <mark>S</mark> TSAPA	1878	1900	2081	2103	1
AHGPTSAPA	1888	1910	2091	2113	1.9
AHG <mark>R</mark> TSAPA	1947	1969	2150	2172	0.10
AHGDTSAPA	1906	1928	2109	2131	0
AHGITSAPA	1904	1926	2107	2129	0.67
AHG <mark>G</mark> TSAPA	1848	1870	2051	2073	1.1
AHG <mark>M</mark> TSAPA	1922	1944	2125	2147	0
AHG <mark>H</mark> TSAPA	1928	1950	2131	2153	0.53
AHG <mark>F</mark> TSAPA	1938	1960	2141	2163	0
AHGYTSAPA	1954	1976	2157	2179	0
AHG <mark>Q</mark> TSAPA	1919	1941	2122	2144	0
AHG <mark>V</mark> TSAPA	1891	1913	2094	2116	1.0
AHGETSAPA	1920	1942	2123	2145	0
AHGTTSAPA	1892	1914	2095	2117	*
AHGNTSAPA	1905	1927	2108	2130	0.10
AHGATSAPA	1862	1884	2065	2087	1.2

*: the peptide AHGTTSAPA resulted in a mixture of mono- and di-glycosylated peptides after incubation with the ppGalNAcT2 and was therefore not included.